openpgp-card/openpgp-card-sequoia/src/lib.rs

1226 lines
43 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-FileCopyrightText: 2021-2023 Heiko Schaefer <heiko@schaefer.name>
// SPDX-License-Identifier: MIT OR Apache-2.0
//! This crate offers ergonomic abstractions to use
//! [OpenPGP card devices](https://en.wikipedia.org/wiki/OpenPGP_card).
//! The central abstraction is the [Card] type, which offers access to all card operations.
//!
//! A [Card] object is always in one of the possible [State]s. The [State] determines which
//! operations can be performed on the card.
//!
//! This crate is a convenient higher-level wrapper around the
//! [openpgp-card](https://crates.io/crates/openpgp-card) crate (which exposes low level access
//! to OpenPGP card functionality).
//! [sequoia-openpgp](https://crates.io/crates/sequoia-openpgp) is used to perform OpenPGP operations.
//!
//! # Backends
//!
//! To make use of this crate, you need to use a backend for communication
//! with cards. The suggested default backend is `card-backend-pcsc`.
//!
//! With `card-backend-pcsc` you can either open all available cards:
//!
//! ```no_run
//! use card_backend_pcsc::PcscBackend;
//! use openpgp_card_sequoia::{state::Open, Card};
//!
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! for backend in PcscBackend::cards(None)? {
//! let mut card = Card::<Open>::new(backend?)?;
//! let mut transaction = card.transaction()?;
//! println!(
//! "Found OpenPGP card with ident '{}'",
//! transaction.application_identifier()?.ident()
//! );
//! }
//! # Ok(())
//! # }
//! ```
//!
//! Or you can open one particular card, by ident:
//!
//! ```no_run
//! use card_backend_pcsc::PcscBackend;
//! use openpgp_card_sequoia::{state::Open, Card};
//!
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let cards = PcscBackend::card_backends(None)?;
//! let mut card = Card::<Open>::open_by_ident(cards, "abcd:01234567")?;
//! let mut transaction = card.transaction()?;
//! # Ok(())
//! # }
//! ```
//!
//! # Use for cryptographic operations
//!
//! ## Decryption
//!
//! To use a card for decryption, it needs to be opened, and user
//! authorization needs to be available.
//! A [`sequoia_openpgp::crypto::Decryptor`] implementation can then be obtained:
//!
//! ```no_run
//! use card_backend_pcsc::PcscBackend;
//! use openpgp_card_sequoia::{state::Open, Card};
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//!
//! // Open card via PCSC
//! let cards = PcscBackend::card_backends(None)?;
//! let mut card = Card::<Open>::open_by_ident(cards, "abcd:01234567")?;
//! let mut transaction = card.transaction()?;
//!
//! // Get user access to the card (and authorize with the user pin)
//! let mut user = transaction.to_user_card("123456")?;
//!
//! // Get decryptor
//! let decryptor = user.decryptor(&|| println!("Touch confirmation needed for decryption"));
//!
//! // Perform decryption operation(s)
//! // ..
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Signing
//!
//! To use a card for signing, it needs to be opened, and signing
//! authorization needs to be available.
//! A [`sequoia_openpgp::crypto::Signer`] implementation can then be obtained.
//!
//! (Note that by default, some OpenPGP Cards will only allow one signing
//! operation to be performed after the password has been presented for
//! signing. Depending on the card's configuration you need to present the
//! user password before each signing operation!)
//!
//! ```no_run
//! use card_backend_pcsc::PcscBackend;
//! use openpgp_card_sequoia::{state::Open, Card};
//!
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // Open card via PCSC
//! let cards = PcscBackend::card_backends(None)?;
//! let mut card = Card::<Open>::open_by_ident(cards, "abcd:01234567")?;
//! let mut transaction = card.transaction()?;
//!
//! // Get signing access to the card (and authorize with the user pin)
//! let mut user = transaction.to_signing_card("123456")?;
//!
//! // Get signer
//! let signer = user.signer(&|| println!("Touch confirmation needed for signing"));
//!
//! // Perform signing operation(s)
//! // ..
//!
//! # Ok(())
//! # }
//! ```
//!
//! # Setting up and configuring a card
//!
//! ```no_run
//! use card_backend_pcsc::PcscBackend;
//! use openpgp_card_sequoia::{state::Open, Card};
//!
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // Open card via PCSC
//! let cards = PcscBackend::card_backends(None)?;
//! let mut card = Card::<Open>::open_by_ident(cards, "abcd:01234567")?;
//! let mut transaction = card.transaction()?;
//!
//! // Get admin access to the card (and authorize with the admin pin)
//! let mut admin = transaction.to_admin_card("12345678")?;
//!
//! // Set the Name and URL fields on the card
//! admin.set_cardholder_name("Alice Adams")?;
//! admin.set_url("https://example.org/openpgp.asc")?;
//!
//! # Ok(())
//! # }
//! ```
use card_backend::{CardBackend, SmartcardError};
use openpgp_card::algorithm::{AlgoSimple, AlgorithmAttributes, AlgorithmInformation};
use openpgp_card::card_do::{
ApplicationIdentifier, CardholderRelatedData, ExtendedCapabilities, ExtendedLengthInfo,
Fingerprint, HistoricalBytes, KeyGenerationTime, KeyInformation, KeySet, Lang, PWStatusBytes,
Sex, TouchPolicy, UserInteractionFlag,
};
use openpgp_card::crypto_data::PublicKeyMaterial;
use openpgp_card::{Error, KeyType};
use sequoia_openpgp::cert::prelude::ValidErasedKeyAmalgamation;
use sequoia_openpgp::packet::key::SecretParts;
use sequoia_openpgp::packet::{key, Key};
use crate::decryptor::CardDecryptor;
use crate::signer::CardSigner;
use crate::state::{Admin, Open, Sign, State, Transaction, User};
use crate::util::{public_key_material_and_fp_to_key, vka_as_uploadable_key};
mod decryptor;
mod privkey;
mod signer;
pub mod sq_util;
pub mod state;
pub mod types;
pub mod util;
/// Shorthand for Sequoia public key data (a single public (sub)key)
pub type PublicKey = Key<key::PublicParts, key::UnspecifiedRole>;
/// Optional PIN, used as a parameter to `Card<Transaction>::into_*_card`.
///
/// Effectively acts like a `Option<&[u8]>`, but with a number of `From`
/// implementations for convenience.
pub struct OptionalPin<'p>(Option<&'p [u8]>);
impl<'p> From<Option<&'p [u8]>> for OptionalPin<'p> {
fn from(value: Option<&'p [u8]>) -> Self {
OptionalPin(value)
}
}
impl<'p> From<&'p str> for OptionalPin<'p> {
fn from(value: &'p str) -> Self {
OptionalPin(Some(value.as_bytes()))
}
}
impl<'p> From<&'p Vec<u8>> for OptionalPin<'p> {
fn from(value: &'p Vec<u8>) -> Self {
OptionalPin(Some(value))
}
}
impl<'p, const S: usize> From<&'p [u8; S]> for OptionalPin<'p> {
fn from(value: &'p [u8; S]) -> Self {
OptionalPin(Some(value))
}
}
/// Representation of an OpenPGP card.
///
/// A card transitions between [`State`]s by starting a transaction (that groups together a number
/// of operations into an atomic sequence) and via PIN presentation.
///
/// Depending on the [`State`] of the card, and the access privileges that are associated with that
/// state, different operations can be performed. In many cases, client software will want to
/// transition between states while performing one workflow for the user.
pub struct Card<S>
where
S: State,
{
state: S,
}
impl Card<Open> {
/// Takes an iterator over [`CardBackend`]s, tries to SELECT the OpenPGP card
/// application on each of them, and checks if its application id matches
/// `ident`.
/// Returns a [`Card<Open>`] for the first match, if any.
pub fn open_by_ident(
cards: impl Iterator<Item = Result<Box<dyn CardBackend + Send + Sync>, SmartcardError>>,
ident: &str,
) -> Result<Self, Error> {
for b in cards.filter_map(|c| c.ok()) {
let mut card = Self::new(b)?;
let aid = {
let tx = card.transaction()?;
tx.state.ard().application_id()?
};
if aid.ident() == ident.to_ascii_uppercase() {
return Ok(card);
}
}
Err(Error::NotFound(format!("Couldn't find card {}", ident)))
}
/// Returns a [`Card<Open>`] based on `backend` (after SELECTing the
/// OpenPGP card application).
pub fn new<B>(backend: B) -> Result<Self, Error>
where
B: Into<Box<dyn CardBackend + Send + Sync>>,
{
let pgp = openpgp_card::Card::new(backend)?;
Ok(Card::<Open> {
state: Open { pgp },
})
}
/// Starts a transaction on the underlying backend (if the backend
/// implementation supports transactions, otherwise the backend
/// will operate without transaction guarantees).
///
/// The resulting [`Card<Transaction>`] object allows performing
/// operations on the card.
pub fn transaction(&mut self) -> Result<Card<Transaction>, Error> {
let opt = self.state.pgp.transaction()?;
Card::<Transaction>::new(opt)
}
/// Retrieve the underlying [`CardBackend`].
///
/// This is useful to take the card object into a different context
/// (e.g. to perform operations on the card with the `yubikey-management`
/// crate, without closing the connection to the card).
pub fn into_backend(self) -> Box<dyn CardBackend + Send + Sync> {
self.state.pgp.into_card()
}
}
impl<'a> Card<Transaction<'a>> {
/// Internal constructor
fn new(mut opt: openpgp_card::Transaction<'a>) -> Result<Self, Error> {
let ard = opt.application_related_data()?;
Ok(Self {
state: Transaction::new(opt, ard),
})
}
/// Replace cached "application related data" in this instance of Open
/// with the current data on the card.
///
/// This is needed e.g. after importing or generating keys on a card, to
/// see these changes reflected in the internal cached
/// [`openpgp_card::card_do::ApplicationRelatedData`].
pub fn reload_ard(&mut self) -> Result<(), Error> {
// FIXME: this should be implemented internally, transparent to users
let ard = self.state.opt.application_related_data()?;
self.state.set_ard(ard);
Ok(())
}
/// True if the reader for this card supports PIN verification with a pin pad.
pub fn feature_pinpad_verify(&mut self) -> bool {
self.state.opt.feature_pinpad_verify()
}
/// True if the reader for this card supports PIN modification with a pin pad.
pub fn feature_pinpad_modify(&mut self) -> bool {
self.state.opt.feature_pinpad_modify()
}
/// Verify the User PIN (for operations such as decryption)
pub fn verify_user_pin(&mut self, pin: &str) -> Result<(), Error> {
self.state.opt.verify_pw1_user(pin.as_bytes())?;
self.state.pw1 = true;
Ok(())
}
/// Verify the User PIN with a physical PIN pad (if available,
/// see [`Self::feature_pinpad_verify`]).
pub fn verify_user_pinpad(&mut self, pinpad_prompt: &dyn Fn()) -> Result<(), Error> {
pinpad_prompt();
self.state.opt.verify_pw1_user_pinpad()?;
self.state.pw1 = true;
Ok(())
}
/// Verify the User PIN for signing operations.
///
/// (Note that depending on the configuration of the card, this may enable
/// performing just one signing operation, or an unlimited amount of
/// signing operations).
pub fn verify_user_signing_pin(&mut self, pin: &str) -> Result<(), Error> {
self.state.opt.verify_pw1_sign(pin.as_bytes())?;
// FIXME: depending on card mode, pw1_sign is only usable once
self.state.pw1_sign = true;
Ok(())
}
/// Verify the User PIN for signing operations with a physical PIN pad
/// (if available, see [`Self::feature_pinpad_verify`]).
pub fn verify_user_signing_pinpad(&mut self, pinpad_prompt: &dyn Fn()) -> Result<(), Error> {
pinpad_prompt();
self.state.opt.verify_pw1_sign_pinpad()?;
// FIXME: depending on card mode, pw1_sign is only usable once
self.state.pw1_sign = true;
Ok(())
}
/// Verify the Admin PIN.
pub fn verify_admin_pin(&mut self, pin: &str) -> Result<(), Error> {
self.state.opt.verify_pw3(pin.as_bytes())?;
self.state.pw3 = true;
Ok(())
}
/// Verify the Admin PIN with a physical PIN pad
/// (if available, see [`Self::feature_pinpad_verify`]).
pub fn verify_admin_pinpad(&mut self, pinpad_prompt: &dyn Fn()) -> Result<(), Error> {
pinpad_prompt();
self.state.opt.verify_pw3_pinpad()?;
self.state.pw3 = true;
Ok(())
}
/// Ask the card if the user password has been successfully verified.
///
/// NOTE: on some cards this functionality seems broken and may decrease
/// the pin's error count!
pub fn check_user_verified(&mut self) -> Result<(), Error> {
self.state.opt.check_pw1_user()
}
/// Ask the card if the admin password has been successfully verified.
///
/// NOTE: on some cards this functionality seems broken and may decrease
/// the pin's error count!
pub fn check_admin_verified(&mut self) -> Result<(), Error> {
self.state.opt.check_pw3()
}
/// Change the User PIN, based on the old User PIN.
pub fn change_user_pin(&mut self, old: &str, new: &str) -> Result<(), Error> {
self.state.opt.change_pw1(old.as_bytes(), new.as_bytes())
}
/// Change the User PIN, based on the old User PIN, with a physical PIN
/// pad (if available, see [`Self::feature_pinpad_modify`]).
pub fn change_user_pin_pinpad(&mut self, pinpad_prompt: &dyn Fn()) -> Result<(), Error> {
pinpad_prompt();
self.state.opt.change_pw1_pinpad()
}
/// Change the User PIN, based on the resetting code `rst`.
pub fn reset_user_pin(&mut self, rst: &str, new: &str) -> Result<(), Error> {
self.state
.opt
.reset_retry_counter_pw1(new.as_bytes(), Some(rst.as_bytes()))
}
/// Change the Admin PIN, based on the old Admin PIN.
pub fn change_admin_pin(&mut self, old: &str, new: &str) -> Result<(), Error> {
self.state.opt.change_pw3(old.as_bytes(), new.as_bytes())
}
/// Change the Admin PIN, based on the old Admin PIN, with a physical PIN
/// pad (if available, see [`Self::feature_pinpad_modify`]).
pub fn change_admin_pin_pinpad(&mut self, pinpad_prompt: &dyn Fn()) -> Result<(), Error> {
pinpad_prompt();
self.state.opt.change_pw3_pinpad()
}
/// Get a view of the card in the [`Card<User>`] state, and authenticate
/// for that state with `pin`, if available.
///
/// If `pin` is not None, `verify_user` is called with that pin.
pub fn to_user_card<'b, 'p, P>(&'b mut self, pin: P) -> Result<Card<User<'a, 'b>>, Error>
where
P: Into<OptionalPin<'p>>,
{
let pin: OptionalPin = pin.into();
if let Some(pin) = pin.0 {
self.verify_user_pin(String::from_utf8_lossy(pin).as_ref())?;
}
Ok(Card::<User> {
state: User { tx: self },
})
}
/// Get a view of the card in the [`Card<Sign>`] state, and authenticate
/// for that state with `pin`, if available.
///
/// If `pin` is not None, `verify_user_for_signing` is called with that pin.
pub fn to_signing_card<'b, 'p, P>(&'b mut self, pin: P) -> Result<Card<Sign<'a, 'b>>, Error>
where
P: Into<OptionalPin<'p>>,
{
let pin: OptionalPin = pin.into();
if let Some(pin) = pin.0 {
self.verify_user_signing_pin(String::from_utf8_lossy(pin).as_ref())?;
}
Ok(Card::<Sign> {
state: Sign { tx: self },
})
}
/// Get a view of the card in the [`Card<Admin>`] state, and authenticate
/// for that state with `pin`, if available.
///
/// If `pin` is not None, `verify_admin` is called with that pin.
pub fn to_admin_card<'b, 'p, P>(&'b mut self, pin: P) -> Result<Card<Admin<'a, 'b>>, Error>
where
P: Into<OptionalPin<'p>>,
{
let pin: OptionalPin = pin.into();
if let Some(pin) = pin.0 {
self.verify_admin_pin(String::from_utf8_lossy(pin).as_ref())?;
}
Ok(Card::<Admin> {
state: Admin { tx: self },
})
}
// --- application data ---
/// The Application Identifier is unique for each card.
/// It includes a manufacturer code and serial number.
///
/// (This is an immutable field on the card. The value is cached in the
/// underlying Card object. It can be retrieved without incurring a call
/// to the card)
pub fn application_identifier(&self) -> Result<ApplicationIdentifier, Error> {
// Use immutable data cache from underlying Card object
self.state.opt.application_identifier()
}
/// The "Extended Capabilities" data object describes features of a card
/// to the caller.
/// This includes the availability and length of various data fields.
///
/// (This is an immutable field on the card. The value is cached in the
/// underlying Card object. It can be retrieved without incurring a call
/// to the card)
pub fn extended_capabilities(&self) -> Result<ExtendedCapabilities, Error> {
// Use immutable data cache from underlying Card object
self.state.opt.extended_capabilities()
}
/// The "Historical Bytes" data object describes features of a card
/// to the caller.
/// The information in this field is probably not relevant for most
/// users of this library, however, some of it is used for the internal
/// operation of the `openpgp-card` library.
///
/// (This is an immutable field on the card. The value is cached in the
/// underlying Card object. It can be retrieved without incurring a call
/// to the card)
pub fn historical_bytes(&self) -> Result<HistoricalBytes, Error> {
// Use immutable data cache from underlying Card object
match self.state.opt.historical_bytes()? {
Some(hb) => Ok(hb),
None => Err(Error::NotFound(
"Card doesn't have historical bytes DO".to_string(),
)),
}
}
/// The "Extended Length Information" data object was introduced in
/// version 3.0 of the OpenPGP card standard.
///
/// The information in this field should not be relevant for
/// users of this library.
/// However, it is used for the internal operation of the `openpgp-card`
/// library.
///
/// (This is an immutable field on the card. The value is cached in the
/// underlying Card object. It can be retrieved without incurring a call
/// to the card)
pub fn extended_length_information(&self) -> Result<Option<ExtendedLengthInfo>, Error> {
// Use immutable data cache from underlying Card object
self.state.opt.extended_length_info()
}
#[allow(dead_code)]
fn general_feature_management() -> Option<bool> {
unimplemented!()
}
#[allow(dead_code)]
fn discretionary_data_objects() {
unimplemented!()
}
/// PW Status Bytes
pub fn pw_status_bytes(&self) -> Result<PWStatusBytes, Error> {
self.state.ard().pw_status_bytes()
}
/// Get algorithm attributes for a key slot.
pub fn algorithm_attributes(&self, key_type: KeyType) -> Result<AlgorithmAttributes, Error> {
self.state.ard().algorithm_attributes(key_type)
}
/// Get the Fingerprints for the three basic [`KeyType`]s.
///
/// (The fingerprints for the three basic key slots are stored in a
/// shared field on the card, thus they can be retrieved in one go)
pub fn fingerprints(&self) -> Result<KeySet<Fingerprint>, Error> {
self.state.ard().fingerprints()
}
/// Get the Fingerprint for one [`KeyType`].
///
/// This function allows retrieval for all slots, including
/// [`KeyType::Attestation`], if available.
pub fn fingerprint(&mut self, key_type: KeyType) -> Result<Option<Fingerprint>, Error> {
let fp = match key_type {
KeyType::Signing => self.fingerprints()?.signature().cloned(),
KeyType::Decryption => self.fingerprints()?.decryption().cloned(),
KeyType::Authentication => self.fingerprints()?.authentication().cloned(),
KeyType::Attestation => self.state.ard().attestation_key_fingerprint()?,
_ => {
return Err(Error::UnsupportedFeature(format!(
"Can't get fingerprint for key_type {:?}",
key_type,
)))
}
};
Ok(fp)
}
/// Get the Key Creation Times for the three basic [`KeyType`]s.
///
/// (The creation time for the three basic key slots are stored in a
/// shared field on the card, thus they can be retrieved in one go)
pub fn key_generation_times(&self) -> Result<KeySet<KeyGenerationTime>, Error> {
self.state.ard().key_generation_times()
}
/// Get the Key Creation Time for one [`KeyType`].
///
/// This function allows retrieval for all slots, including
/// [`KeyType::Attestation`], if available.
pub fn key_generation_time(
&mut self,
key_type: KeyType,
) -> Result<Option<KeyGenerationTime>, Error> {
let ts = match key_type {
KeyType::Signing => self.key_generation_times()?.signature().cloned(),
KeyType::Decryption => self.key_generation_times()?.decryption().cloned(),
KeyType::Authentication => self.key_generation_times()?.authentication().cloned(),
KeyType::Attestation => self.state.ard().attestation_key_generation_time()?,
_ => {
return Err(Error::UnsupportedFeature(format!(
"Can't get creation time for key_type {:?}",
key_type,
)))
}
};
Ok(ts)
}
pub fn key_information(&self) -> Result<Option<KeyInformation>, Error> {
self.state.ard().key_information()
}
/// Get the [`UserInteractionFlag`] for a key slot.
/// This includes the [`TouchPolicy`], if the card supports touch
/// confirmation.
pub fn user_interaction_flag(
&self,
key_type: KeyType,
) -> Result<Option<UserInteractionFlag>, Error> {
match key_type {
KeyType::Signing => self.state.ard().uif_pso_cds(),
KeyType::Decryption => self.state.ard().uif_pso_dec(),
KeyType::Authentication => self.state.ard().uif_pso_aut(),
KeyType::Attestation => self.state.ard().uif_attestation(),
_ => Err(Error::UnsupportedFeature(format!(
"Can't get UIF for key_type {:?}",
key_type,
))),
}
}
/// List of CA-Fingerprints of “Ultimately Trusted Keys”.
/// May be used to verify Public Keys from servers.
pub fn ca_fingerprints(&self) -> Result<[Option<Fingerprint>; 3], Error> {
self.state.ard().ca_fingerprints()
}
/// Get optional "Private use" data from the card.
///
/// The presence and maximum length of these DOs is announced
/// in [`ExtendedCapabilities`].
///
/// If available, there are 4 data fields for private use:
///
/// - `1`: read accessible without PIN verification
/// - `2`: read accessible without PIN verification
/// - `3`: read accessible with User PIN verification
/// - `4`: read accessible with Admin PIN verification
pub fn private_use_do(&mut self, num: u8) -> Result<Vec<u8>, Error> {
self.state.opt.private_use_do(num)
}
/// Login Data
///
/// This DO can be used to store any information used for the Log-In
/// process in a client/server authentication (e.g. user name of a
/// network).
/// The maximum length of this DO is announced in Extended Capabilities.
pub fn login_data(&mut self) -> Result<Vec<u8>, Error> {
self.state.opt.login_data()
}
// --- URL (5f50) ---
/// Get "cardholder" URL from the card.
///
/// "The URL should contain a link to a set of public keys in OpenPGP format, related to
/// the card."
pub fn url(&mut self) -> Result<String, Error> {
Ok(String::from_utf8_lossy(&self.state.opt.url()?).to_string())
}
/// Cardholder related data (contains the fields: Name, Language preferences and Sex)
pub fn cardholder_related_data(&mut self) -> Result<CardholderRelatedData, Error> {
self.state.opt.cardholder_related_data()
}
// Unicode codepoints are a superset of iso-8859-1 characters
fn latin1_to_string(s: &[u8]) -> String {
s.iter().map(|&c| c as char).collect()
}
/// Get cardholder name.
///
/// This is an ISO 8859-1 (Latin 1) String of up to 39 characters.
///
/// Note that the standard specifies that this field should be encoded
/// according to ISO/IEC 7501-1:
///
/// "The data element consists of surname (e. g. family name and given
/// name(s)) and forename(s) (including name suffix, e. g., Jr. and number).
/// Each item is separated by a ´<´ filler character (3C), the family- and
/// fore-name(s) are separated by two ´<<´ filler characters."
///
/// This library doesn't perform this encoding.
pub fn cardholder_name(&mut self) -> Result<String, Error> {
let crd = self.state.opt.cardholder_related_data()?;
match crd.name() {
Some(name) => Ok(Self::latin1_to_string(name)),
None => Ok("".to_string()),
}
}
/// Get the current digital signature count (how many signatures have been issued by the card)
pub fn digital_signature_count(&mut self) -> Result<u32, Error> {
Ok(self
.state
.opt
.security_support_template()?
.signature_count())
}
/// SELECT DATA ("select a DO in the current template").
pub fn select_data(&mut self, num: u8, tag: &[u8]) -> Result<(), Error> {
self.state.opt.select_data(num, tag)
}
/// Get cardholder certificate.
///
/// Call select_data() before calling this fn to select a particular
/// certificate (if the card supports multiple certificates).
pub fn cardholder_certificate(&mut self) -> Result<Vec<u8>, Error> {
self.state.opt.cardholder_certificate()
}
/// "GET NEXT DATA" for the DO cardholder certificate.
///
/// Cardholder certificate data for multiple slots can be read from the card by first calling
/// cardholder_certificate(), followed by up to two calls to next_cardholder_certificate().
pub fn next_cardholder_certificate(&mut self) -> Result<Vec<u8>, Error> {
self.state.opt.next_cardholder_certificate()
}
/// Algorithm Information (list of supported Algorithm attributes).
pub fn algorithm_information(&mut self) -> Result<Option<AlgorithmInformation>, Error> {
// The DO "Algorithm Information" (Tag FA) shall be present if
// Algorithm attributes can be changed
let ec = self.extended_capabilities()?;
if !ec.algo_attrs_changeable() {
// Algorithm attributes can not be changed,
// list_supported_algo is not supported
return Ok(None);
}
self.state.opt.algorithm_information()
}
/// "MANAGE SECURITY ENVIRONMENT".
/// Make `key_ref` usable for the operation normally done by the key
/// designated by `for_operation`
pub fn manage_security_environment(
&mut self,
for_operation: KeyType,
key_ref: KeyType,
) -> Result<(), Error> {
self.state
.opt
.manage_security_environment(for_operation, key_ref)
}
// ----------
/// Get "Attestation Certificate (Yubico)"
pub fn attestation_certificate(&mut self) -> Result<Vec<u8>, Error> {
self.state.opt.attestation_certificate()
}
/// Firmware Version, YubiKey specific (?)
pub fn firmware_version(&mut self) -> Result<Vec<u8>, Error> {
self.state.opt.firmware_version()
}
/// Set "identity", Nitrokey Start specific (possible values: 0, 1, 2).
/// <https://docs.nitrokey.com/start/windows/multiple-identities.html>
///
/// A Nitrokey Start can present as 3 different virtual OpenPGP cards.
/// This command enables one of those virtual cards.
///
/// Each virtual card identity behaves like a separate, independent OpenPGP card.
pub fn set_identity(&mut self, id: u8) -> Result<(), Error> {
// FIXME: what is in the returned data - is it ever useful?
let _ = self.state.opt.set_identity(id)?;
Ok(())
}
// ----------
/// Get the raw public key material for a key slot on the card
/// (also see [`Self::public_key`] for getting a Sequoia PGP key object)
pub fn public_key_material(&mut self, key_type: KeyType) -> Result<PublicKeyMaterial, Error> {
self.state.opt.public_key(key_type)
}
/// Get a sequoia public key representation
/// ([`Key<key::PublicParts, key::UnspecifiedRole>`])
/// for a key slot on the card
pub fn public_key(&mut self, kt: KeyType) -> Result<Option<PublicKey>, Error> {
let fps = self.fingerprints()?;
let ts = self.key_generation_time(kt)?;
let fp = match kt {
KeyType::Signing => fps.signature(),
KeyType::Decryption => fps.decryption(),
KeyType::Authentication => fps.authentication(),
_ => None,
};
match kt {
KeyType::Signing => {
if let Ok(pkm) = self.public_key_material(kt) {
if let Some(ts) = ts {
return Ok(Some(public_key_material_and_fp_to_key(
&pkm,
KeyType::Signing,
&ts,
fp.expect("Signature fingerprint is unset"),
)?));
}
}
Ok(None)
}
KeyType::Decryption => {
if let Ok(pkm) = self.public_key_material(KeyType::Decryption) {
if let Some(ts) = ts {
return Ok(Some(public_key_material_and_fp_to_key(
&pkm,
KeyType::Decryption,
&ts,
fp.expect("Decryption fingerprint is unset"),
)?));
}
}
Ok(None)
}
KeyType::Authentication => {
if let Ok(pkm) = self.public_key_material(KeyType::Authentication) {
if let Some(ts) = ts {
return Ok(Some(public_key_material_and_fp_to_key(
&pkm,
KeyType::Authentication,
&ts,
fp.expect("Authentication fingerprint is unset"),
)?));
}
}
Ok(None)
}
_ => unimplemented!(),
}
}
// ----------
/// Reset all state on this OpenPGP card
pub fn factory_reset(&mut self) -> Result<(), Error> {
self.state.opt.factory_reset()
}
}
impl<'app, 'open> Card<User<'app, 'open>> {
/// Helper fn to easily access underlying openpgp_card object
fn card(&mut self) -> &mut openpgp_card::Transaction<'app> {
&mut self.state.tx.state.opt
}
pub fn decryptor(
&mut self,
touch_prompt: &'open (dyn Fn() + Send + Sync),
) -> Result<CardDecryptor<'_, 'app>, Error> {
let pk = self
.state
.tx
.public_key(KeyType::Decryption)?
.expect("Couldn't get decryption pubkey from card");
Ok(CardDecryptor::with_pubkey(self.card(), pk, touch_prompt))
}
pub fn decryptor_from_public(
&mut self,
pubkey: PublicKey,
touch_prompt: &'open (dyn Fn() + Send + Sync),
) -> CardDecryptor<'_, 'app> {
CardDecryptor::with_pubkey(self.card(), pubkey, touch_prompt)
}
pub fn authenticator(
&mut self,
touch_prompt: &'open (dyn Fn() + Send + Sync),
) -> Result<CardSigner<'_, 'app>, Error> {
let pk = self
.state
.tx
.public_key(KeyType::Authentication)?
.expect("Couldn't get authentication pubkey from card");
Ok(CardSigner::with_pubkey_for_auth(
self.card(),
pk,
touch_prompt,
))
}
pub fn authenticator_from_public(
&mut self,
pubkey: PublicKey,
touch_prompt: &'open (dyn Fn() + Send + Sync),
) -> CardSigner<'_, 'app> {
CardSigner::with_pubkey_for_auth(self.card(), pubkey, touch_prompt)
}
/// Set optional "Private use" data on the card.
///
/// The presence and maximum length of these DOs is announced
/// in [`ExtendedCapabilities`].
///
/// If available, there are 4 data fields for private use:
///
/// - `1`: write accessible with User PIN verification
/// - `2`: write accessible with Admin PIN verification
/// - `3`: write accessible with User PIN verification
/// - `4`: write accessible with Admin PIN verification
pub fn set_private_use_do(&mut self, num: u8, data: Vec<u8>) -> Result<(), Error> {
self.card().set_private_use_do(num, data)
}
}
impl<'app, 'open> Card<Sign<'app, 'open>> {
/// Helper fn to easily access underlying openpgp_card object
fn card(&mut self) -> &mut openpgp_card::Transaction<'app> {
&mut self.state.tx.state.opt
}
pub fn signer(
&mut self,
touch_prompt: &'open (dyn Fn() + Send + Sync),
) -> Result<CardSigner<'_, 'app>, Error> {
// FIXME: depending on the setting in "PW1 Status byte", only one
// signature can be made after verification for signing
let pk = self
.state
.tx
.public_key(KeyType::Signing)?
.expect("Couldn't get signing pubkey from card");
Ok(CardSigner::with_pubkey(self.card(), pk, touch_prompt))
}
pub fn signer_from_public(
&mut self,
pubkey: PublicKey,
touch_prompt: &'open (dyn Fn() + Send + Sync),
) -> CardSigner<'_, 'app> {
// FIXME: depending on the setting in "PW1 Status byte", only one
// signature can be made after verification for signing
CardSigner::with_pubkey(self.card(), pubkey, touch_prompt)
}
/// Generate Attestation (Yubico)
pub fn generate_attestation(
&mut self,
key_type: KeyType,
touch_prompt: &'open (dyn Fn() + Send + Sync),
) -> Result<(), Error> {
// Touch is required if:
// - the card supports the feature
// - and the policy is set to a value other than 'Off'
if let Some(uif) = self.state.tx.state.ard().uif_attestation()? {
if uif.touch_policy().touch_required() {
(touch_prompt)();
}
}
self.card().generate_attestation(key_type)
}
}
impl<'app, 'open> Card<Admin<'app, 'open>> {
pub fn as_transaction(&'_ mut self) -> &mut Card<Transaction<'app>> {
self.state.tx
}
/// Helper fn to easily access underlying openpgp_card object
fn card(&mut self) -> &mut openpgp_card::Transaction<'app> {
&mut self.state.tx.state.opt
}
}
impl Card<Admin<'_, '_>> {
/// Set cardholder name.
///
/// This is an ISO 8859-1 (Latin 1) String of max. 39 characters.
///
/// Note that the standard specifies that this field should be encoded according
/// to ISO/IEC 7501-1:
///
/// "The data element consists of surname (e. g. family name and given
/// name(s)) and forename(s) (including name suffix, e. g., Jr. and number).
/// Each item is separated by a ´<´ filler character (3C), the family- and
/// fore-name(s) are separated by two ´<<´ filler characters."
///
/// This library doesn't perform this encoding.
pub fn set_cardholder_name(&mut self, name: &str) -> Result<(), Error> {
// All chars must be in ASCII7
if name.chars().any(|c| !c.is_ascii()) {
return Err(Error::InternalError("Invalid char in name".into()));
};
// FIXME: encode spaces and do ordering
if name.len() >= 40 {
return Err(Error::InternalError("name too long".into()));
}
self.card().set_name(name.as_bytes())
}
pub fn set_lang(&mut self, lang: &[Lang]) -> Result<(), Error> {
if lang.len() > 8 {
return Err(Error::InternalError("lang too long".into()));
}
self.card().set_lang(lang)
}
pub fn set_sex(&mut self, sex: Sex) -> Result<(), Error> {
self.card().set_sex(sex)
}
/// Set optional "Private use" data on the card.
///
/// The presence and maximum length of these DOs is announced
/// in [`ExtendedCapabilities`].
///
/// If available, there are 4 data fields for private use:
///
/// - `1`: write accessible with User PIN verification
/// - `2`: write accessible with Admin PIN verification
/// - `3`: write accessible with User PIN verification
/// - `4`: write accessible with Admin PIN verification
pub fn set_private_use_do(&mut self, num: u8, data: Vec<u8>) -> Result<(), Error> {
self.card().set_private_use_do(num, data)
}
pub fn set_login_data(&mut self, login_data: &[u8]) -> Result<(), Error> {
self.card().set_login(login_data)
}
/// Set "hardholder" URL on the card.
///
/// "The URL should contain a link to a set of public keys in OpenPGP format, related to
/// the card."
pub fn set_url(&mut self, url: &str) -> Result<(), Error> {
if url.chars().any(|c| !c.is_ascii()) {
return Err(Error::InternalError("Invalid char in url".into()));
}
// Check for max len
let ec = self.state.tx.extended_capabilities()?;
if ec.max_len_special_do().is_none()
|| url.len() <= ec.max_len_special_do().unwrap() as usize
{
// If we don't know the max length for URL ("special DO"),
// or if it's within the acceptable length:
// send the url update to the card.
self.card().set_url(url.as_bytes())
} else {
Err(Error::InternalError("URL too long".into()))
}
}
/// Set PW Status Bytes.
///
/// According to the spec, length information should not be changed.
///
/// If `long` is false, sends 1 byte to the card, otherwise 4.
///
/// So, effectively, with `long == false` the setting `pw1_cds_multi`
/// can be changed.
/// With `long == true`, the settings `pw1_pin_block` and `pw3_pin_block`
/// can also be changed.
pub fn set_pw_status_bytes(
&mut self,
pw_status: &PWStatusBytes,
long: bool,
) -> Result<(), Error> {
self.card().set_pw_status_bytes(pw_status, long)
}
/// Configure the "only valid for one PSO:CDS" setting in PW Status Bytes.
///
/// If `once` is `true`, the User PIN must be verified before each
/// signing operation on the card.
/// If `once` is `false`, one User PIN verification is good for an
/// unlimited number of signing operations.
pub fn set_user_pin_signing_validity(&mut self, once: bool) -> Result<(), Error> {
let mut pws = self.as_transaction().pw_status_bytes()?;
pws.set_pw1_cds_valid_once(once);
self.set_pw_status_bytes(&pws, false)
}
/// Set the touch policy for a key slot (if the card supports this
/// feature).
///
/// Note that the current touch policy setting (if available) can be read
/// via [`Card<Transaction>::user_interaction_flag`].
pub fn set_touch_policy(&mut self, key: KeyType, policy: TouchPolicy) -> Result<(), Error> {
let uif = match key {
KeyType::Signing => self.state.tx.state.ard().uif_pso_cds()?,
KeyType::Decryption => self.state.tx.state.ard().uif_pso_dec()?,
KeyType::Authentication => self.state.tx.state.ard().uif_pso_aut()?,
KeyType::Attestation => self.state.tx.state.ard().uif_attestation()?,
_ => unimplemented!(),
};
if let Some(mut uif) = uif {
uif.set_touch_policy(policy);
match key {
KeyType::Signing => self.card().set_uif_pso_cds(&uif)?,
KeyType::Decryption => self.card().set_uif_pso_dec(&uif)?,
KeyType::Authentication => self.card().set_uif_pso_aut(&uif)?,
KeyType::Attestation => self.card().set_uif_attestation(&uif)?,
_ => unimplemented!(),
}
} else {
return Err(Error::UnsupportedFeature(
"User Interaction Flag not available".into(),
));
};
Ok(())
}
/// Set the User PIN on the card (also resets the User PIN error count)
pub fn reset_user_pin(&mut self, new: &str) -> Result<(), Error> {
self.card().reset_retry_counter_pw1(new.as_bytes(), None)
}
/// Define the "resetting code" on the card
pub fn set_resetting_code(&mut self, pin: &str) -> Result<(), Error> {
self.card().set_resetting_code(pin.as_bytes())
}
/// Set optional AES encryption/decryption key
/// (32 bytes for AES256, or 16 bytes for AES128),
/// if the card supports this feature.
///
/// The availability of this feature is announced in
/// [`Card<Transaction>::extended_capabilities`].
pub fn set_pso_enc_dec_key(&mut self, key: &[u8]) -> Result<(), Error> {
self.card().set_pso_enc_dec_key(key)
}
/// Upload a Sequoia PGP [`ValidErasedKeyAmalgamation`] to the card into
/// a specific key slot.
///
/// (The caller needs to make sure that `vka` is suitable as `key_type`)
pub fn upload_key(
&mut self,
vka: ValidErasedKeyAmalgamation<SecretParts>,
key_type: KeyType,
password: Option<String>,
) -> Result<(), Error> {
let key = vka_as_uploadable_key(vka, password);
self.card().key_import(key, key_type)
}
/// Configure the `algorithm_attributes` for key slot `key_type` based on
/// the algorithm `algo`.
/// This can be useful in preparation for [`Self::generate_key`].
///
/// This is a convenience wrapper for [`Self::set_algorithm_attributes`]
/// that determines the exact appropriate [`AlgorithmAttributes`] by
/// reading information from the card.
pub fn set_algorithm(&mut self, key_type: KeyType, algo: AlgoSimple) -> Result<(), Error> {
let attr = algo.matching_algorithm_attributes(self.card(), key_type)?;
self.set_algorithm_attributes(key_type, &attr)
}
/// Configure the key slot `key_type` to `algorithm_attributes`.
/// This can be useful in preparation for [`Self::generate_key`].
///
/// Note that legal values for [`AlgorithmAttributes`] are card-specific.
/// Different OpenPGP card implementations may support different
/// algorithms, sometimes with differing requirements for the encoding
/// (e.g. field sizes)
///
/// See [`Self::set_algorithm`] for a convenience function that sets
/// the algorithm attributes based on an [`AlgoSimple`].
pub fn set_algorithm_attributes(
&mut self,
key_type: KeyType,
algorithm_attributes: &AlgorithmAttributes,
) -> Result<(), Error> {
self.card()
.set_algorithm_attributes(key_type, algorithm_attributes)
}
/// Generate a new cryptographic key in slot `key_type`, with the currently
/// configured cryptographic algorithm
/// (see [`Self::set_algorithm`] for changing the algorithm setting).
pub fn generate_key(
&mut self,
key_type: KeyType,
) -> Result<(PublicKeyMaterial, KeyGenerationTime), Error> {
self.card()
.generate_key(crate::util::public_to_fingerprint, key_type)
}
}