openpgp-card/openpgp-card/src/keys.rs

501 lines
16 KiB
Rust

// SPDX-FileCopyrightText: 2021 Heiko Schaefer <heiko@schaefer.name>
// SPDX-License-Identifier: MIT OR Apache-2.0
//! Generate and import keys
use anyhow::{anyhow, Result};
use std::convert::TryFrom;
use std::time::{SystemTime, UNIX_EPOCH};
use crate::algorithm::{Algo, AlgoInfo, Curve, EccAttrs, RsaAttrs};
use crate::apdu::command::Command;
use crate::apdu::commands;
use crate::card_app::CardApp;
use crate::card_do::{ApplicationRelatedData, Fingerprint, KeyGenerationTime};
use crate::crypto_data::{
CardUploadableKey, EccKey, EccPub, PrivateKeyMaterial, PublicKeyMaterial,
RSAKey, RSAPub,
};
use crate::tlv::{length::tlv_encode_length, value::Value, Tlv};
use crate::Error;
use crate::{apdu, KeyType};
/// Generate asymmetric key pair on the card.
///
/// This is a convenience wrapper around gen_key() that:
/// - sets algorithm attributes (if not None)
/// - generates a key pair on the card
/// - sets the creation time on the card to the current host time
/// - calculates fingerprint for the key and sets it on the card
///
/// `fp_from_pub` calculates the fingerprint for a public key data object and
/// creation timestamp
pub(crate) fn gen_key_with_metadata(
card_app: &mut CardApp,
fp_from_pub: fn(
&PublicKeyMaterial,
KeyGenerationTime,
KeyType,
) -> Result<Fingerprint, Error>,
key_type: KeyType,
algo: Option<&Algo>,
) -> Result<(PublicKeyMaterial, KeyGenerationTime), Error> {
// Set algo on card if it's Some
if let Some(target_algo) = algo {
// FIXME: caching
let ard = card_app.get_application_related_data()?; // no caching, here!
let ecap = ard.get_extended_capabilities()?;
// Only set algo if card supports setting of algo attr
if ecap.algo_attrs_changeable() {
card_app.set_algorithm_attributes(key_type, target_algo)?;
} else {
// Check if the current algo on the card is the one we want, if
// not we return an error.
// NOTE: For RSA, the target algo shouldn't prescribe an
// Import-Format. The Import-Format should always depend on what
// the card supports.
// let cur_algo = ard.get_algorithm_attributes(key_type)?;
// assert_eq!(&cur_algo, target_algo);
// FIXME: return error
}
}
// get new state of algo
let ard = card_app.get_application_related_data()?; // no caching, here!
let cur_algo = ard.get_algorithm_attributes(key_type)?;
// generate key
let tlv = generate_asymmetric_key_pair(card_app, key_type)?;
// derive pubkey
let pubkey = tlv_to_pubkey(&tlv, &cur_algo)?;
log::trace!("public {:x?}", pubkey);
// set creation time
let time = SystemTime::now();
// Store creation timestamp (unix time format, limited to u32)
let ts = time
.duration_since(UNIX_EPOCH)
.map_err(|e| Error::InternalError(anyhow!(e)))?
.as_secs() as u32;
let ts = ts.into();
card_app.set_creation_time(ts, key_type)?;
// calculate/store fingerprint
let fp = fp_from_pub(&pubkey, ts, key_type)?;
card_app.set_fingerprint(fp, key_type)?;
Ok((pubkey, ts))
}
/// Transform a public key Tlv from the card into PublicKeyMaterial
fn tlv_to_pubkey(tlv: &Tlv, algo: &Algo) -> Result<PublicKeyMaterial> {
let n = tlv.find(&[0x81].into());
let v = tlv.find(&[0x82].into());
let ec = tlv.find(&[0x86].into());
match (n, v, ec) {
(Some(n), Some(v), None) => {
let rsa = RSAPub::new(n.serialize(), v.serialize());
Ok(PublicKeyMaterial::R(rsa))
}
(None, None, Some(ec)) => {
let data = ec.serialize();
log::trace!("EC --- len {}, data {:x?}", data.len(), data);
let ecc = EccPub::new(data, algo.clone());
Ok(PublicKeyMaterial::E(ecc))
}
(_, _, _) => Err(anyhow!(
"Unexpected public key material from card {:?}",
tlv
)),
}
}
/// 7.2.14 GENERATE ASYMMETRIC KEY PAIR
///
/// This runs the low level key generation primitive on the card.
/// (This does not set algorithm attributes, creation time or fingerprint)
pub(crate) fn generate_asymmetric_key_pair(
card_app: &mut CardApp,
key_type: KeyType,
) -> Result<Tlv, Error> {
// generate key
let crt = get_crt(key_type)?;
let gen_key_cmd = commands::gen_key(crt.serialize().to_vec());
let card_client = card_app.get_card_client();
let resp = apdu::send_command(card_client, gen_key_cmd, true)?;
resp.check_ok()?;
let tlv = Tlv::try_from(resp.data()?)?;
Ok(tlv)
}
/// Get the public key material for a key from the card.
///
/// ("Returns the public key of an asymmetric key pair previously generated
/// in the card or imported")
///
/// (See 7.2.14 GENERATE ASYMMETRIC KEY PAIR)
pub(crate) fn get_pub_key(
card_app: &mut CardApp,
key_type: KeyType,
) -> Result<PublicKeyMaterial, Error> {
// get current algo
let ard = card_app.get_application_related_data()?; // FIXME: caching
let algo = ard.get_algorithm_attributes(key_type)?;
// get public key
let crt = get_crt(key_type)?;
let get_pub_key_cmd = commands::get_pub_key(crt.serialize().to_vec());
let resp =
apdu::send_command(card_app.get_card_client(), get_pub_key_cmd, true)?;
resp.check_ok()?;
let tlv = Tlv::try_from(resp.data()?)?;
let pubkey = tlv_to_pubkey(&tlv, &algo)?;
Ok(pubkey)
}
/// Import private key material to the card as a specific KeyType.
///
/// If the key is suitable for `key_type`, an Error is returned (either
/// caused by checks before attempting to upload the key to the card, or by
/// an error that the card reports during an attempt to upload the key).
pub(crate) fn key_import(
card_app: &mut CardApp,
key: Box<dyn CardUploadableKey>,
key_type: KeyType,
algo_list: Option<AlgoInfo>,
) -> Result<(), Error> {
// FIXME: caching?
let ard = card_app.get_application_related_data()?;
let (algo, key_cmd) = match key.get_key()? {
PrivateKeyMaterial::R(rsa_key) => {
let rsa_attrs =
determine_rsa_attrs(&ard, &*rsa_key, key_type, algo_list)?;
let key_cmd = rsa_key_import_cmd(key_type, rsa_key, &rsa_attrs)?;
(Algo::Rsa(rsa_attrs), key_cmd)
}
PrivateKeyMaterial::E(ecc_key) => {
let ecc_attrs =
determine_ecc_attrs(&*ecc_key, key_type, algo_list)?;
let key_cmd = ecc_key_import_cmd(ecc_key, key_type)?;
(Algo::Ecc(ecc_attrs), key_cmd)
}
};
let fp = key.get_fp()?;
// Now that we have marshalled all necessary information, perform all
// set-operations on the card.
// Only set algo attrs if "Extended Capabilities" lists the feature
if ard.get_extended_capabilities()?.algo_attrs_changeable() {
card_app.set_algorithm_attributes(key_type, &algo)?;
}
apdu::send_command(card_app.get_card_client(), key_cmd, false)?
.check_ok()?;
card_app.set_fingerprint(fp, key_type)?;
card_app.set_creation_time(key.get_ts(), key_type)?;
Ok(())
}
/// Derive RsaAttrs for `rsa_key`.
///
/// If available, via lookup in `algo_list`, otherwise the current
/// algorithm attributes are loaded and checked. If neither method yields a
/// result, we 'guess' the RsaAttrs setting.
fn determine_rsa_attrs(
ard: &ApplicationRelatedData,
rsa_key: &dyn RSAKey,
key_type: KeyType,
algo_list: Option<AlgoInfo>,
) -> Result<RsaAttrs> {
// RSA bitsize
// (round up to 4-bytes, in case the key has 8+ leading zeros)
let rsa_bits = (((rsa_key.get_n().len() * 8 + 31) / 32) * 32) as u16;
// Figure out suitable RSA algorithm parameters:
// Does the card offer a list of algorithms?
let rsa_attrs = if let Some(algo_list) = algo_list {
// Yes -> Look up the parameters for key_type and rsa_bits.
// (Or error, if the list doesn't have an entry for rsa_bits)
get_card_algo_rsa(algo_list, key_type, rsa_bits)?
} else {
// No -> Get the current algorithm attributes for key_type.
let algo = ard.get_algorithm_attributes(key_type)?;
// Is the algorithm on the card currently set to RSA?
if let Algo::Rsa(rsa) = algo {
// If so, use the algorithm parameters from the card and
// adjust the bit length based on the user-provided key.
RsaAttrs::new(rsa_bits, rsa.len_e(), rsa.import_format())
} else {
// The card doesn't provide an algorithm list, and the
// current algorithm on the card is not RSA.
//
// So we 'guess' a value for len_e (some cards only
// support 17, others only support 32).
// [If this approach turns out to be insufficient, we
// need to determine the model of the card and use a
// list of which RSA parameters that model of card
// supports]
RsaAttrs::new(rsa_bits, 32, 0)
}
};
Ok(rsa_attrs)
}
/// Derive EccAttrs from `ecc_key`, check if the OID is listed in algo_list.
fn determine_ecc_attrs(
ecc_key: &dyn EccKey,
key_type: KeyType,
algo_list: Option<AlgoInfo>,
) -> Result<EccAttrs> {
// If we have an algo_list, refuse upload if oid is not listed
if let Some(algo_list) = algo_list {
let oid = ecc_key.get_oid();
if !check_card_algo_ecc(algo_list, key_type, oid) {
// If oid is not in algo_list, return error.
return Err(anyhow!(
"Oid {:?} unsupported according to algo_list",
oid
));
}
}
// (Precisely looking up ECC algorithms in the card's "Algorithm
// Information" seems to do more harm than good, so we don't do it.
// Some cards report erroneous information about supported algorithms
// - e.g. Yubikey 5 reports support for EdDSA over Cv25519 and
// Ed25519, but not ECDH).
Ok(EccAttrs::new(
ecc_key.get_type(),
Curve::try_from(ecc_key.get_oid())?,
None,
))
}
/// Look up RsaAttrs parameters in algo_list based on key_type and rsa_bits
fn get_card_algo_rsa(
algo_list: AlgoInfo,
key_type: KeyType,
rsa_bits: u16,
) -> Result<RsaAttrs, Error> {
// Find suitable algorithm parameters (from card's list of algorithms).
// Get Algos for this keytype
let keytype_algos: Vec<_> = algo_list.get_by_keytype(key_type);
// Get RSA algo attributes
let rsa_algos: Vec<_> = keytype_algos
.iter()
.map(|a| if let Algo::Rsa(r) = a { Some(r) } else { None })
.flatten()
.collect();
// Filter card algorithms by rsa bitlength of the key we want to upload
let algo: Vec<_> = rsa_algos
.iter()
.filter(|&a| a.len_n() == rsa_bits)
.collect();
// Did we find a suitable algorithm entry?
if !algo.is_empty() {
// HACK: The SmartPGP applet reports two variants of RSA (import
// format 1 and 3), but in fact only supports the second variant.
// Using the last option happens to work better, in that case.
Ok((**algo.last().unwrap()).clone())
} else {
// RSA with this bit length is not in algo_list
return Err(anyhow!(
"RSA {} unsupported according to algo_list",
rsa_bits
)
.into());
}
}
/// Check if `oid` is supported for `key_type` in algo_list.
fn check_card_algo_ecc(
algo_list: AlgoInfo,
key_type: KeyType,
oid: &[u8],
) -> bool {
// Find suitable algorithm parameters (from card's list of algorithms).
// Get Algos for this keytype
let keytype_algos: Vec<_> = algo_list.get_by_keytype(key_type);
// Get attributes
let ecc_algos: Vec<_> = keytype_algos
.iter()
.map(|a| if let Algo::Ecc(e) = a { Some(e) } else { None })
.flatten()
.collect();
// Check if this OID exists in the algorithm information for key_type
ecc_algos.iter().any(|e| e.oid() == oid)
}
/// Create command for RSA key import
fn rsa_key_import_cmd(
key_type: KeyType,
rsa_key: Box<dyn RSAKey>,
rsa_attrs: &RsaAttrs,
) -> Result<Command, Error> {
// Assemble key command (see 4.4.3.12 Private Key Template)
// Collect data for "Cardholder private key template" DO (7F48)
//
// (Describes the content of the Cardholder private key DO)
let mut cpkt_data = vec![];
// "Cardholder private key" (5F48)
//
// "The key data elements according to the definitions in the CPKT DO
// (7F48)."
let mut key_data = Vec::new();
// -- Public exponent: e --
// Expected length of e in bytes, rounding up from the bit value in algo.
let len_e_bytes = ((rsa_attrs.len_e() + 7) / 8) as u8;
cpkt_data.push(0x91);
// len_e in bytes has a value of 3-4, it doesn't need TLV encoding
cpkt_data.push(len_e_bytes);
// Push e, padded with zero bytes from the left
let e_as_bytes = rsa_key.get_e();
for _ in e_as_bytes.len()..(len_e_bytes as usize) {
key_data.push(0);
}
key_data.extend(e_as_bytes);
// -- Prime1: p + Prime2: q --
// len_p and len_q are len_n/2 (value from card algorithm list).
// transform unit from bits to bytes.
let len_p_bytes: u16 = rsa_attrs.len_n() / 2 / 8;
let len_q_bytes: u16 = rsa_attrs.len_n() / 2 / 8;
cpkt_data.push(0x92);
// len p in bytes, TLV-encoded
cpkt_data.extend_from_slice(&tlv_encode_length(len_p_bytes));
cpkt_data.push(0x93);
// len q in bytes, TLV-encoded
cpkt_data.extend_from_slice(&tlv_encode_length(len_q_bytes));
// FIXME: do p/q need to be padded from the left when many leading
// bits are zero?
key_data.extend(rsa_key.get_p().iter());
key_data.extend(rsa_key.get_q().iter());
// import format requires chinese remainder theorem fields
if rsa_attrs.import_format() == 2 || rsa_attrs.import_format() == 3 {
// PQ: 1/q mod p
let pq = rsa_key.get_pq();
cpkt_data.push(0x94);
cpkt_data.extend(&tlv_encode_length(pq.len() as u16));
key_data.extend(pq.iter());
// DP1: d mod (p - 1)
let dp1 = rsa_key.get_dp1();
cpkt_data.push(0x95);
cpkt_data.extend(&tlv_encode_length(dp1.len() as u16));
key_data.extend(dp1.iter());
// DQ1: d mod (q - 1)
let dq1 = rsa_key.get_dq1();
cpkt_data.push(0x96);
cpkt_data.extend(&tlv_encode_length(dq1.len() as u16));
key_data.extend(dq1.iter());
}
// import format requires modulus n field
if rsa_attrs.import_format() == 1 || rsa_attrs.import_format() == 3 {
let n = rsa_key.get_n();
cpkt_data.push(0x97);
cpkt_data.extend(&tlv_encode_length(n.len() as u16));
key_data.extend(n.iter());
}
// Assemble the DOs for upload
let cpkt = Tlv::new([0x7F, 0x48], Value::S(cpkt_data));
let cpk = Tlv::new([0x5F, 0x48], Value::S(key_data));
// "Control Reference Template"
let crt = get_crt(key_type)?;
// "Extended header list (DO 4D)"
let ehl = Tlv::new([0x4d], Value::C(vec![crt, cpkt, cpk]));
// Return the full key import command
Ok(commands::key_import(ehl.serialize().to_vec()))
}
/// Create command for ECC key import
fn ecc_key_import_cmd(
ecc_key: Box<dyn EccKey>,
key_type: KeyType,
) -> Result<Command, Error> {
let scalar_data = ecc_key.get_scalar();
let scalar_len = scalar_data.len() as u8;
// 1) "Control Reference Template"
let crt = get_crt(key_type)?;
// 2) "Cardholder private key template" (7F48)
let cpkt = Tlv::new([0x7F, 0x48], Value::S(vec![0x92, scalar_len]));
// 3) "Cardholder private key" (5F48)
let cpk = Tlv::new([0x5F, 0x48], Value::S(scalar_data.to_vec()));
// "Extended header list (DO 4D)" (contains the three inner TLV)
let ehl = Tlv::new([0x4d], Value::C(vec![crt, cpkt, cpk]));
// key import command
Ok(commands::key_import(ehl.serialize().to_vec()))
}
/// Get "Control Reference Template" Tlv for `key_type`
fn get_crt(key_type: KeyType) -> Result<Tlv, Error> {
// "Control Reference Template" (0xB8 | 0xB6 | 0xA4)
let tag = match key_type {
KeyType::Decryption => 0xB8,
KeyType::Signing => 0xB6,
KeyType::Authentication => 0xA4,
_ => return Err(Error::InternalError(anyhow!("Unexpected KeyType"))),
};
Ok(Tlv::new([tag], Value::S(vec![])))
}